If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4+9x+3x^2=0
a = 3; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·3·4
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{33}}{2*3}=\frac{-9-\sqrt{33}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{33}}{2*3}=\frac{-9+\sqrt{33}}{6} $
| (3x)/4-5=x/2 | | 5x+13=2x-13 | | 3x-5/7-8=0 | | z2=196 | | 2m^2-48=0 | | 2(x+3)=6x-1 | | a-1=4((a-10) | | (0.5)^x=x | | 15-x=17-3x | | 3a÷4=a+18 | | -16r=40 | | 21x-9=11x-59 | | 8x-14=-2x+6 | | -8x-1=-4x+19 | | 2x²-9x=0 | | 9x-4=-7+4 | | x=6+8x2 | | 9x-10x=-7+4 | | 4d-8=3d | | 11x-1=2x-28 | | x+30=-30 | | 48+(x*2)=97 | | 45a=20 | | -9x+8=-6x-4 | | ((x-2)+(x)+(3x+1))=((2x-5)+(x+4)+(6X-7)) | | 19x+6=9x-14 | | 6p+5-2p-3=30 | | ((4782968)(3.05827514))/524288=k | | ((4782968)(3.05827514^1/7))/524288=k | | -2x13=-7x+28 | | (z-2)(z-2)=-7(z-2) | | (k+7)(k-3)=(k-3) |